[1]逄銘玉,許高,唐英才,等.井下環境固井水泥環射孔沖擊破壞實驗研究[J].測井技術,2019,43(04):348-354.[doi:10.16489/j.issn.1004-1338.2019.04.003]
 PANG Mingyu,XU Gao,TANG Yingcai,et al.Experiment of the Damage of Perforated Cement Sheath in Downhole Environment[J].WELL LOGGING TECHNOLOGY,2019,43(04):348-354.[doi:10.16489/j.issn.1004-1338.2019.04.003]
點擊復制

井下環境固井水泥環射孔沖擊破壞實驗研究()
分享到:

《測井技術》[ISSN:1004-1338/CN:61-1223/TE]

卷:
第43卷
期數:
2019年04期
頁碼:
348-354
欄目:
實驗研究
出版日期:
2019-08-30

文章信息/Info

Title:
Experiment of the Damage of Perforated Cement Sheath in Downhole Environment
文章編號:
1004-1338(2019)04-0348-07
作者:
逄銘玉12許高1唐英才3朱秀星1薛世峰1
(1.中國石油大學(華東),山東青島266580;2.中石化青島安全工程研究院,山東青島266000; 3.中海油服油技事業部,河北廊坊065201)
Author(s):
PANG Mingyu12 XU Gao1 TANG Yingcai3 ZHU Xiuxing1 XUE Shifeng1
(1. China University of Petroleum, Qingdao, Shandong 266580, China; 2. SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong 266000, China; 3. Oilfield Technology Division, China Oilfield Services Ltd., Langfang, Hebei 065201, China)
關鍵詞:
射孔水泥環爆炸沖擊載荷柱狀水泥環砂巖靶破環失效機理
Keywords:
perforation cement sheath detonation impact load columnar cement sheath and sandstone perforating target damage mechanism
分類號:
P63184
DOI:
10.16489/j.issn.1004-1338.2019.04.003
文獻標志碼:
A
摘要:
非常規油氣資源開發中,高強度聚能射孔完井導致的油氣井水泥環層間封隔與完整性破壞問題嚴重。設計一種新型柱狀水泥環砂巖射孔靶試件,研究井下圍壓和溫度環境工況下射孔水泥環結構破環機理。設計9組靶試樣,實驗研究水泥材質、水泥厚度、固井缺陷、裝藥量、射孔彈型號等參數對水泥環結構破壞的影響,采用CT技術分析射孔水泥環結構破壞形式與程度。結果表明,水泥環結構抗射孔沖擊能力主要受控于固井缺陷、水泥環材料組織、射孔彈型號和井筒爆轟壓力變化。在實驗研究基礎上將射孔沖擊載荷分為射孔侵徹壓力和井眼爆轟壓力。高速射孔侵徹壓力載荷引起射孔周邊局部塑性流動損傷、微裂紋和壓實,而井筒爆轟壓力載荷導致水泥環結構宏觀徑向裂紋,對結構強度與層間封隔有致命影響。相關的實驗數據和認識對理解射孔水泥環結構破壞機理,指導射孔工藝實踐具有重要意義。
Abstract:
In unconventional oil and gas resources development, the interlayer sealing and integrity damage of cement sheath in oil and gas wells caused by high-intensity jet perforation completion is serious. A new type of columnar cement sheath and sandstone perforating target was designed to study the perforated cement sheath structure damage mechanism in the downhole confining pressure and temperature conditions. Nine groups of target specimens were designed to study the effects on the cement sheath structural damage of cement material, cement thickness, cementing defects, charge quantity, perforating projectile type, etc., CT scanning was used to analyze the structural damage form and degree of perforated cement sheath. The results show that the perforation impact resistance of cement sheath structure is mainly controlled by cementing defects, cement sheath material structure, perforation projectile type and wellbore detonation pressure variation. On the basis of experimental research, perforation impact load is classified as perforation penetration pressure and borehole detonation pressure. Partial plastic flow damage, micro-cracks and compaction around perforation tunnel are caused by high-speed perforation penetration pressure load, while macro-radial cracks of cement sheath structure are caused by wellbore detonation pressure load, which has fatal effect on structural strength and interlayer sealing. Relevant experimental data and knowledge are of great significance for understanding the damage mechanism of perforated cement sheath structure and guiding perforation process.

參考文獻/References:

[1]XI Y, LI J, LIU G H, et al. A new numerical investigation of cement sheath integrity during multistage hydraulic fracturing shale gas wells [J]. Journal of Natural Gas Science and Engineering, 2018(49): 331-341. [2]DAVIES R J, ALMOND S, WARD R S, et al. Oil and gas wells and their integrity: implications for shale and unconventional resource exploitation [J]. Marine and Petroleum Geology, 2015(59): 674-675. [3]楊智光. 提高油氣井固井水泥環韌性的研究 [D]. 杭州: 浙江大學, 2003. [4]OSARUMWENSE N, SATTI R, WHITE R, et al. Shaped charge selection and underbalance optimization using the perforation flow laboratory for deepwater subsea wells in offshore Africa [R]. SPE 170259-MS, 2014. [5]GOODWIN K J. CROOK R J. Cement sheath stress failure [J]. SPE Drilling Engineering, 1992, 7(4): 291-296. [6]CARPENTER R B, BRADY J L, BLOUNT C G. The effects of temperature and cement admixes on bond strength [J]. Journal of Petroleum Technology, 1992, 44(8): 936-941. [7]JACKSON P B, MURPHEY C E. Effect of casing pressure on gas flow through a sheath of set cement [R]. SPE 25698, 1993. [8]王祥林, 王允良, 王立平, 等. 射孔對水泥環損傷的綜合試驗研究 [J]. 地震工程與工程振動, 1994(1): 89-98. [9]BOUKHELIFA L, MORONI N, JAMES S G, et al. Evaluation of cement systems for oil and gas well zonal isolation in a full-scale annular geometry [R]. SPE 87195, 2004. [10]KOSINOWSKI C, TEODORIU C. Study of class g cement fatigue using experimental investigations [R]. SPE 153008, 2012. [11]LI Z Y, ZHANG K, GUO X Y, et al. Study of the failure mechanisms of a cement sheath based on an equivalent physical experiment [J]. Journal of Natural Gas Science and Engineering, 2016, 31: 331-339. [12]李寧, 杜建波, 艾正青, 等. 高溫深井環境下水泥環完整性模擬評價及改進措施 [J]. 鉆井液與完井液, 2017, 34(1): 106-111. [13]ALBAWI A, DE ANDRADE J, TORSTER M, et al. Experimental set-up for testing cement sheath integrity in Arctic wells [R]. OTC 24587, 2014. [14]LECAMPION B, QUESADA D, LOIZZO M, et al. Bungerb interface debonding as a controlling mechanism for loss of well integrity: importance for CO2 injector wells [J]. Energy Procedia, 2011, 4: 5219-5226. [15]NYGAARD R, SALEHI S, WEIDEMAN B, et al. Effect of dynamic loading on wellbore leakage for the Wabamun area CO2-sequestration project [J]. Journal of Canadian Petroleum Technology, 2011, 53(1): 499-508. [16]李進, 龔寧, 李早元, 等. 射孔完井工況下固井水泥環破壞研究進展 [J]. 鉆井液與完井液, 2016, 33(6): 10-16. [17]BOIS A P, GARNIER A, GALDIOLO G, et al. Use of a mechanistic model to forecast cement-sheath integrity for CO2 storage [R]. SPE 139668, 2010. [18]GROVE B, WERNER A, HAN C. Explosion-induced damage to oil well perforating gun carriers [C]∥Structures under Shock and Impact, 2006. [19]李東傳, 金成福, 劉橋, 等. 聚能射孔器爆炸氣體損害機理研究 [J]. 測井技術, 2011, 35(5): 494-496. [20]唐建波. 井下環境射流穿孔動力學仿真分析 [D]. 青島: 中國石油大學(華東), 2016. [21]XUE S F, ZHU X X, ZHANG L, et al. Research on the damage of porosity and permeability due to perforation on sandstone in the compaction zone [J]. Computers materials & continua, 2016, 51(1): 21-42. [22]寧建國, 王成, 馬天寶. 爆炸與沖擊動力學 [M]. 北京: 國防工業出版社, 2012. [23]GUSTAVO M A, VCTOR R P, FRANCISCO G, et al. Numerical simulation of fracture of concrete at different loading rates by using the cohesive crack model [J]. Theoretical and Applied Fracture Mechanics, 2018, 96: 308-325.

相似文獻/References:

[1]謝忠林,慕玉福,郝永剛.磁法射孔質量檢測儀及其應用[J].測井技術,1999,23(S1):489.
[2]李明厚,朱建新,丁希杰,等.射孔對油氣井套管抗擠壓強度的影響[J].測井技術,2005,29(S1):63.
 LI Ming-hou,ZHU Jian-xin,DING Xi-jie.Effects of Perforation on the Squeeze Strength of Casings[J].WELL LOGGING TECHNOLOGY,2005,29(04):63.
[3]陳鋒,袁吉誠.水平井再射孔的起爆方法[J].測井技術,2000,24(01):74.
 Chen Feng,Yuan Jicheng. WLT,000,et al.Detonation Method for Reperforation in Horizontal Wells[J].WELL LOGGING TECHNOLOGY,2000,24(04):74.
[4]史慧生,王志信.增效射孔中裝彈的優化設計[J].測井技術,2000,24(02):140.
 Shi Huisheng,Wang Zhixin. WLT,000,et al.Optimum Design of Perforating Charges with Aftereffect in Perforating fracturing Complex Device.[J].WELL LOGGING TECHNOLOGY,2000,24(04):140.
[5]喬文孝,杜光升.射孔孔眼中散射超聲脈沖波的FEM模擬[J].測井技術,2001,25(02):96.
 Qiao Wenxiao,Du Guangsheng.FEM Simulation of Ultrasonic Pluse Scattered by Fluid-filled Perforation.[J].WELL LOGGING TECHNOLOGY,2001,25(04):96.
[6]王志信.射孔安全技術淺析[J].測井技術,1994,18(05):368.
 Wang Zhixin..Analysis of Perforation Safty[J].WELL LOGGING TECHNOLOGY,1994,18(04):368.
[7]吳銘德.射孔與油氣井產能[J].測井技術,1992,16(06):416.
 Wu Mingde.Perforating and Productivity of the Oil and Gas Wells[J].WELL LOGGING TECHNOLOGY,1992,16(04):416.
[8]姚家驊.國內首臺數控射孔取心儀通過局級鑒定[J].測井技術,1991,15(04):285.
[9]王衛華.阻抗匹配技術原理及其在射孔工藝中的應用[J].測井技術,1995,19(01):70.
 Wang Weihua.Principle of Impedance Matching Technique and Its Applications to Perforating Technology[J].WELL LOGGING TECHNOLOGY,1995,19(04):70.
[10]吳曉武,馮啟剛,嚴征宇,等.深穿透射孔技術的推廣應用[J].測井技術,1996,20(04):287.
 Wu,X.W.et al..Application of Deep-Penetrating Perforating Technology[J].WELL LOGGING TECHNOLOGY,1996,20(04):287.

備注/Memo

備注/Memo:
基金項目:國家十三五科技重大專項子課題“復雜油層精細射孔與評價工藝技術”(2016ZX05058002-005) 第一作者:逄銘玉,男,1968年生,博士,從事油氣安全工程研究。E-mail:[email protected] 通訊作者:薛世峰,男,1963年生,教授,從事工程力學研究。E-mail:[email protected](收稿日期: 2019-01-21本文編輯肖圣)
更新日期/Last Update: 2019-08-30
爱拼彩票游戏 山西新十一选五 福彩幸运农场高手预测 湖北30选5开奖 福建22选5开奖结果19210 欧美股票指数 上海快三走势图今天10 大乐透开奖结果排三开奖结果 如何看主力筹码分布图 三分pk拾正规彩票 山西快乐十分开奖结果双